
High-fidelity image reconstruction for compressed
ultrafast photography via an augmented-
Lagrangian and deep-learning hybrid algorithm
CHENGSHUAI YANG,1 YUNHUA YAO,1,6 CHENGZHI JIN,1 DALONG QI,1 FENGYAN CAO,1 YILIN HE,1 JIALI YAO,1

PENGPENG DING,1 LIANG GAO,2 TIANQING JIA,1 JINYANG LIANG,3 ZHENRONG SUN,1 AND SHIAN ZHANG1,4,5,7

1State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062,
China
2Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
3Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Laboratory of Applied Computational Imaging,
Varennes, Québec J3X1S2, Canada
4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
5Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
6e-mail: yhyao@lps.ecnu.edu.cn
7e-mail: sazhang@phy.ecnu.edu.cn

Received 15 September 2020; revised 16 November 2020; accepted 2 December 2020; posted 3 December 2020 (Doc. ID 410018);
published 21 January 2021

Compressed ultrafast photography (CUP) is the fastest single-shot passive ultrafast optical imaging technique,
which has shown to be a powerful tool in recording self-luminous or non-repeatable ultrafast phenomena.
However, the low fidelity of image reconstruction based on the conventional augmented-Lagrangian (AL)
and two-step iterative shrinkage/thresholding (TwIST) algorithms greatly prevents practical applications of
CUP, especially for those ultrafast phenomena that need high spatial resolution. Here, we develop a novel
AL and deep-learning (DL) hybrid (i.e., AL�DL) algorithm to realize high-fidelity image reconstruction for
CUP. The AL�DL algorithm not only optimizes the sparse domain and relevant iteration parameters via learn-
ing the dataset but also simplifies the mathematical architecture, so it greatly improves the image reconstruction
accuracy. Our theoretical simulation and experimental results validate the superior performance of the
AL�DL algorithm in image fidelity over conventional AL and TwIST algorithms, where the peak signal-
to-noise ratio and structural similarity index can be increased at least by 4 dB (9 dB) and 0.1 (0.05) for a complex
(simple) dynamic scene, respectively. This study can promote the applications of CUP in related fields, and it will
also enable a new strategy for recovering high-dimensional signals from low-dimensional detection. © 2021

Chinese Laser Press

https://doi.org/10.1364/PRJ.410018

1. INTRODUCTION

Ultrafast imaging has played an indispensable role in photo-
chemistry [1,2], biomedicine [3–5], microfluidics [6], shock
waves [7], and plasma physics [8]. Recently, various ultrafast
imaging techniques have been developed, including com-
pressed ultrafast photography (CUP) [9–11]. Unlike some ac-
tive ultrafast imaging techniques that need specific illumination
light [12–14] or a pump–probe technique that requires multi-
ple measurements [15–17], CUP is a single-shot and passive
ultrafast imaging technique. Its temporal resolution and num-
ber of frames can reach tens of femtoseconds and several hun-
dred, respectively. Therefore, CUP has great advantages for
measuring some self-luminous or non-repeatable ultrafast phe-
nomena, which is attributed mainly to the novel model of

CUP, which combines compressed sensing (CS) theory and
time–space conversion technology. So far, CUP has been suc-
cessfully applied to measure light reflection and refraction [9],
femtosecond temporal focusing [10], photonic Mach cones
[18], dissipative solitons [19], phase-sensitive transparent ob-
jects [20], three-dimensional (3D) objects [21], ultrashort laser
spatiotemporal evolution [22], and photoluminescence proc-
esses [9]. However, due to the high data compression ratio,
the fidelity of reconstructed images for CUP is relatively low
by the conventional two-step iterative shrinkage/thresholding
(TwIST) algorithm, which limits its practicality. To improve
image fidelity, a variety of methods have been proposed, such
as a space- and intensity-constrained image reconstruction
algorithm [23], augmented-Lagrangian (AL)-based image
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reconstruction algorithm [24], plug-and-play alternating direc-
tion method of multipliers algorithm [25], optimizing the
codes for CUP [26], lossless CUP [18], and multi-encoding
CUP [27]. These proposed schemes can improve image fidelity
to a certain extent, but there are still great challenges in meas-
uring the complex dynamic scenes.

In image reconstruction of CUP, all selections of the sparse
domain, determination of relevant iteration parameters, and
denoising after iteration calculation greatly limit image fidelity.
To completely solve these problems, we developed a novel im-
age reconstruction method based on an AL and deep-learning
(DL) hybrid (i.e., AL�DL) algorithm. This idea is borrowed
mainly from some early algorithms, such as the AL algorithm
[24,28,29], learning iteration parameters [30–33], learning
sparse domain [34–37], and U-net architecture [38], but there
are still many differences compared to each of the early algo-
rithms. First, the AL�DL algorithm utilizes multiple learning
transformations to seek the best sparse domain. Typically, the
sparse domain in conventional TwIST and AL algorithms is
determined before image reconstruction [24,39], so it is usually
not optimal for one dynamic scene. In contrast, the sparse do-
main in the AL�DL algorithm can be optimized in multiple
transformations, which is more pertinent. Second, the
AL�DL algorithm takes full advantage of gradient descent
(GD), DL, and AL algorithms, which simplifies the math-
ematical architecture to deal with the 3D tensor problem,
and these advantages can reduce the cost of each iteration
and decrease the number of iterations. Third, the AL�DL
algorithm optimizes the relevant iteration parameters by learn-
ing the dataset, which is different from previous AL and TwIST
algorithms, where these parameters are artificially predeter-
mined. Finally, the AL�DL algorithm uses a U-net architec-
ture containing attention layers to help denoise and retain the
spatial details of the images after iteration calculation.
Importantly, our theoretical simulation and experimental re-
sults show the AL�DL algorithm can obtain much higher
image fidelity than conventional AL and TwIST algorithms
for CUP, which strongly supports our theory.

2. PRINCIPLE

In CUP, a 3D dynamic scene I�x, y, t� is encoded by operator
C , sheared by operator S, and integrated by operator T , and
finally a two-dimensional (2D) image E�x 0, y 0� is obtained.
For convenience, hereafter, I�x, y, t� is abbreviated to I , and
E�x 0, y 0� is abbreviated to E . Mathematically, this process
can be described as

E � TSCI : (1)

For simplicity, we define O � TSC . Thus, Eq. (1) can be
further written as

E � OI: (2)

To recover 3D I from 2D E , we need to solve the inverse
problem of Eq. (2). The number of elements in I is much larger
than that in E , so the inverse problem of Eq. (2) is undeter-
mined. The CUP strategy is to introduce a CS theory [9]. The
CS theory makes full use of the sparsity of I in a certain domain
to recover the original information. This sparsity in one domain
means that only a few elements are nonzero, while most of the

elements are zero. Consider a case in which I has n elements
and E has m elements in the original domain, and I has s non-
zero elements in a sparse domain, i.e., the sparsity where n ≫ s
and n > m > s. Due to the fact thatm is generally larger than s,
this makes it possible to solve the inverse problem of Eq. (2). In
a practical solution, the CS algorithm minimizes I in a sparse
domain on condition of Eq. (1), which is shown as�

min
I

Φ�I�
s:t: E − OI � 0

, (3)

where Φ�I� is the expression of I in the sparse domain.
According to CS theory [40,41], the original dynamic scene
I can be completely recovered when

m > f sμ2, (4)

where f is a constant correlated with the number of elements n,
μ is the mutual coherence between the sparse basis of the sparse
domain Φ and operator O, determined by operators C , S, and
T . From Eq. (4), one can see that both increasing m and reduc-
ing s and μ are feasible schemes to improve the quality of image
reconstruction. However, increasing m, i.e., increasing the sam-
pling rate, will reduce the spatial resolution or requires many
streak cameras, which is impractical in the actual CUP system.
Thus, reducing s and μ is the best choice. Optimizing O can
reduce only μ, while optimizing Φ can reduce both s and μ;
therefore, here we employ the method of optimizing Φ. To
optimize Φ, we impose a low-rank property on the entire dy-
namic scene I (tensor) with many different transformations
[42], which is different from traditional methods with only one
transformation. Thus, problem (3) can be further written as8<

: min
I�x, y, t�

Xq
p

ψpI

s:t: E − OI � 0

, (5)

where ψp represents one transformation in the sparse domain,
and q denotes the total number of transformations. In trans-
forming problem (5) from a constraint into an unconstraint,
there exist two frameworks: the penalty function method
and the AL method. The performance of the AL method is
better than that of the penalty function method, which has
been proved in previous works [24,29], and therefore, here
the AL method is adopted. Thus, problem (5) can be trans-
formed into

min
I

�Xq
p

ψ pI − γ�E − OI� � ζ

2
kE − OIk2F

�
, (6)

where γ and ζ are the Lagrangian multiplier and penalty param-
eter, respectively, which are associated with I . For convenience,
problem (6) is further written as

min
I

�Xq
p

ψpI �
ζ

2

����E −
γ

ζ
− OI

����2
F

�
: (7)

To solve problem (7), an auxiliary variable J is introduced
into problem (7), and is written as

Research Article Vol. 9, No. 2 / February 2021 / Photonics Research B31



8>><
>>:

min
I

(Xq
p

ψpJ �
ζ

2

����E −
γ

ζ
− OI

����2
F

)

s:t: I � J

: (8)

By adopting the AL method, the constrained problem (8)
can be transformed into

min
I , J

(Xq
p

�
ψpJ − λp�I − J� �

δp
2
kI − Jk2F

�

� ζ

2

����E −
γ

ζ
− OI

����2
F

)
, (9)

where λ � fλ1, λ2,…, λqg and δ � fδ1, δ2,…, δqg are the
Lagrangian multipliers and penalty parameters, respectively,
which are associated with J in different transformations. By
transformation, problem (9) can be further written as

min
I , J

�Xq
p

�
ψpJ �

δp
2

����I − λpδp − J
����2
F

�
� ζ

2

����E −
γ

ζ
− OI

����2
F

�
:

(10)

Problem (10) can be solved by an alternating direction
method of multipliers (ADMM) based on an iteration of solv-
ing the I -subproblem and J-subproblem alternatively.
However, in the J-subproblem, the sparse domains in different
transformations lead to different solutions at the beginning of
the iteration. Therefore, some independent auxiliary variables
W � fW 1,W 2,…,W qg are introduced for each transforma-
tion, and thus problem (10) can be written as

min
I ,W

�Xq
p

�
ψpW p �

δp
2

����I − λpδp −W p

����2
F

�
� ζ

2

����E −
γ

ζ
−OI

����2
F

�
:

(11)

To solve problem (11), the ADMM is also adopted to solve
the I -subproblem and W -subproblem alternatively. In the kth
iteration, the I -subproblem can be written as

I k � arg min
I

�Xq
p

δkp
2

����I − λkpδkp −W k−1
p

����2
F

� ζk

2

����E −
γk

ζk
− OI

����2
F

�
, (12)

and the W -subproblem can be written as

W k
p � arg min

W p

ψpW p �
δkp
2

����I k − λkpδkp −W p

����2
F

: (13)

The I -subproblem in Eq. (12) is a quadratic regularized
least-squares problem, and its direct solution is given in a closed
form as

8>>>><
>>>>:

Ik � HARD

"
ζkOT E − γkOT �

 Xf
p

δkpW k−1
p − λkp

!#
,

HARD �
 
ζkOTO�

Xf
p

δkpI iden

!−1

,

(14)

where I iden is an identity operator. It is expensive to compute
HARD due to large data, so here the GD algorithm is used to
solve the I -subproblem. The main shortcoming of the GD al-
gorithm is that the number of iterations is very large because it
is difficult to choose the step size. Some methods have been
developed to obtain a better step size through much compu-
tation, such as the Barzilai and Borwein (BB) method
[43,44]. Here, a learning method is used to seek the optimized
step size. In our method, the number of iterations is much less
than that of the BB method. Based on the GD algorithm, the
solution to Eq. (12) can be expressed as

I k � I k-1 − αk
�Xq

p

δkp

�
I k−1 −

λkp
δkp

−W k−1
p

�

− ζkOT

�
E −

γk

ζk
− OIk−1

��
, (15)

where α is the step size in the GD algorithm, and here the GD
algorithm is utilized to calculate Eq. (15). From Eqs. (15) and
(13), one can see that the solution to problem (6) depends
mainly on W p instead of I . For convenience, the solution
to W p can be further written as

W k
p � Sp

�
I k −

λkp
δkp

�
: (16)

To obtain the solver Sp�·�, the traditional algorithms usually
employ the explicit handmade image prior as the sparse do-
main, such as a total variation (TV) prior and a wavelet prior
[29,36]. However, the hand-crafted image prior has no perti-
nence for one dynamic scene, so it is not the best sparse do-
main. Here, we propose to learn the solver Sp�·� by
convolutional neural networks. The architecture of learning
solver Sp�·� is a spatial–temporal network, which is utilized
to exploit the sparse domain from spatial and temporal corre-
lation. This network consists of two sets of convolutional layers
followed by a rectified linear unit (ReLU) layer and a single
convolutional layer, as shown in Fig. 1(a), which is motivated
by a recent work on image spatial super-resolution [45].

The general framework of the AL�DL algorithm is shown
in Fig. 1(b). Compared with the conventional TwIST or AL
algorithm, we optimize the sparse domain and some relevant
iteration parameters fαk, δk, ζkg by end-to-end training. The
optimized sparse domain by specific training can greatly reduce
the sparsity s and coherence μ, which is very helpful for high-
fidelity image reconstruction, as shown in Eq. (4). To help
denoise and retain more details after the iteration, we add
U-net architecture containing self-attention, as shown in
Fig. 2. The U-net has five times downsampling and upsam-
pling, as shown in Fig. 2(a). In particular, we have two times
convolution operations with stride 1 after downsampling or up-
sampling. Also, we impose self-attention to the layer that has
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128 feature maps before deconvolution, which can help the
architecture learn the long-range similarity easily, as shown
in Fig. 2(b). Here, U-net allows the network to propagate
the context information to some higher resolution layers, which
has been successfully utilized to recover 3D information from
2D information in the spectral images [38]. Meanwhile, the
self-attention mechanism, which has been recently proposed
in computer vision tasks [46–49], can be used to exploit both
the non-local similarity of spatial textures and the long-range
temporal similarity, because the self-attention can help net-
works focus on some specific details and form some local spe-
cific feature. By embedding U-net architecture, the mean peak
signal-to-noise ratio (PSNR) value of all the images in our sim-
ulating dynamic scenes increases by 0.81 dB, while the mean
structural similarity index (SSIM) value increases by 0.007.
Therefore, the AL�DL algorithm can retain more spatial de-
tails and finally achieve higher image fidelity than conventional
AL and TwIST algorithms in theory. To facilitate researchers in
citing and using our AL�DL algorithm, the codes are avail-
able at https://github.com/integritynoble/ALDL-algorithm.

3. THEORETICAL SIMULATIONS

To validate the superior performance of the AL�DL algo-
rithm in CUP, we perform three theoretical simulations and
two experiments. In image reconstruction, TensorFlow is em-
ployed to implement the AL�DL algorithm on an NVIDIA
Geforce GTX 2080Ti GPU with 11 GB device memory.
Initially, the size of all images should be resized to
32N × 32M due to five (25 � 32) times downsampling and
upsampling in the U-net architecture, but the number K of
frames is not limited, which indicates that the dynamic scene
should have 32N × 32M × K cube, whereN ,M , and K can be
adjusted according to the real dynamic scene. In fact, the resiz-
ing of the image has no side effect on the dynamic scene, be-
cause the size of images can be set to be larger than the actual
one by padding zeros. When learning the model, the relevant
iteration parameters are set as follows: all initial elements in
Lagrangian multipliers γ and λ � fλ1, λ2,…, λqg are set to
zero, initial I is set as OTE , the number of iterations is 11,
maximum running epoch is 280, and the initial learning rate
is 0.008. Meanwhile, a rooted square-mean-error (RMSE) is
used as the training loss, which is minimized by the Adam op-
timizer [50]. In each iteration, the values of Lagrangian multi-
pliers γ and λ are calculated with the AL algorithm
[24,28,29,51]. In our theoretical simulations, we chose three
kinds of dynamic scenes with different complexities to test
the ability of the AL�DL algorithm in the image
reconstruction of CUP, and each dynamic scene contains eight
frames. The three dynamic scenes are boatman [52], ocean an-
imal [53], and finger [54]. Here, the boatman scene has some
droplets and subtle textures, and therefore the relevant images
are difficult to compress, representing the complex scene, while
the finger scene contains only finger movement; thus, the rel-
evant images are easy to compress, representing a simple scene.
Usually, the inverse of the lossless compression ratio of images
can be used to illustrate the complexity of a dynamic scene [55].
For each dynamic scene, 512 relevant pictures are utilized to
train the model, and k-fold cross-validation is used to track
the training effect. Here, this set of pictures is divided into
two parts: one is used as training images, and the other is used
as test images. To train the model, the 512 pictures are grouped
and then combined into many small videos, and each video
contains eight pictures, which corresponds to the frame num-
ber of each dynamic scene. Here, only one picture is replaced in
each video compared to the previous video. Also, these original
videos are randomly partitioned into eight equal-sized
sub-videos in the eight-fold cross-validation. To show the supe-
riority of the AL�DL algorithm, the AL and TwIST algo-
rithms are also used for reconstruction based on the TV
domain, which are used mostly for CUP [9–11,18–24,
56,57]. The reconstructed images of the boatman, ocean ani-
mal, and finger by the AL�DL, AL, and TwIST algorithms
are shown in Fig. 3, together with the ground truth for
comparison.

Here, only three representative pictures are selected, and
an interesting area in each dynamic scene is enlarged for
observation. Spatial details in the boatman, ocean animal,
and finger can be clearly observed by the AL�DL algorithm,
while these details are submerged by the AL and TwIST

Fig. 2. (a) U-net architecture in the AL�DL algorithm; (b) self-
attention model.

Fig. 1. Data flow chart of the AL�DL algorithm. (a) Solver Sp�·�
in a sparse domain; (b) general framework by connecting each iteration
in a sequence order. Here, each Si�·� is calculated in parallel to pro-
ducing W i , and GD algorithm is employed to calculate I .
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algorithms, which is disadvantageous for high-spatial-resolu-
tion imaging of a dynamic scene. To intuitively compare
the improved efficiency in image fidelity by the AL�DL al-
gorithm, we calculate PSNR and SSIM, and the calculated re-
sults are given in Table 1. Compared to the AL and TwIST
algorithms, both PSNR and SSIM by the AL�DL algorithm
are significantly improved. Here, PSNR (SSIM) is increased by
at least 4.35 dB (0.136) for the boatman, 5.47 dB (0.114) for
the ocean animal, and 9.78 dB (0.051) for the finger. Based on
these calculated results, a rule can be found, which is, the sim-
pler the spatial structure of the dynamic scene, the higher the
improvement efficiency of PSNR, while the improvement
efficiency of SSIM shows the opposite behavior. This phe-
nomenon should be related to the sparsity of the dynamic
scene; the simpler dynamic scene usually has higher sparsity,
and vice versa. PSNR is based on a logarithmic function, which
is not very well matched to perceived visual quality, but SSIM is
based on visible structures in the image. Thus, PSNR has high
improvement efficiency for a simple dynamic scene (i.e., finger),
while SSIM has high improvement efficiency for a complex
dynamic scene (i.e., boatman). In addition, the AL�DL al-
gorithm can reconstruct a dynamic scene in only a few seconds,

which is much shorter than the AL and TwIST algorithms,
which need tens of seconds; the computing efficiency is im-
proved by an order of magnitude, which is very beneficial in
practical applications of CUP.

4. EXPERIMENTAL RESULTS

Besides the above theoretical simulations, we also experimen-
tally verify the superiority of the AL�DL algorithm on image
reconstruction of CUP. The system configuration of CUP is
given in Fig. 4. The dynamic scene is imaged via a camera lens
and a 4f imaging system. On the image plane, a digital micro-
mirror device (DMD) (Texas Instruments, DLP LightCrafter)
is used to encode the dynamic scene in the spatial domain with
a pseudo-random binary pattern, as encoding operator C.
Through the collection of the same 4f imaging system and
the reflection of a beam splitter, the encoded dynamic scene
is vertically deflected by a streak camera (Hamamatsu, C7700),
as shearing operator S. Finally, a complementary metal–oxide-
semiconductor (CMOS) camera (Hamamatsu, ORCA-
flash4.0) is employed to detect the encoded and deflected
dynamic scene, as integrating operator T . Combining the mea-
sured image by CMOS and the codes on DMD, the original
dynamic scene is reconstructed by the AL�DL, AL, and
TwIST algorithms. For the training data of the AL�DL al-
gorithm, we simulated the dynamic scenes based on the static
images recorded without operators C and S.

First, we measure the temporal evolution of a spatially
modulated picosecond laser spot, and the experimental design
is shown in Fig. 5(a) [24]. The output 50 fs (full width at half
maximum, FWHM) laser pulse from a Ti:sapphire amplifier is
broadened to about 16 ps by a stretcher, and a thin wire is used
to divide the laser spot into two components in space to obtain
such a dynamic scene with special spatial structure. The spa-
tially modulated laser spot illuminates a thin white paper,
and a small fraction of photons can pass through the thin white
paper. Thus, the temporal evolution behavior of a spatially
modulated laser spot can be measured by our CUP system with
a frame rate of 500 billion frames per second (fps). In this dy-
namic scene, the signal strength changes, while the spatial
structure remains unchanged. The reconstructed images by
the AL�DL, AL, and TwIST algorithms are shown in
Figs. 5(b)–5(d), respectively. Compared with the AL and

Fig. 4. System configuration of CUP. DMD, digital micromirror
device; CMOS, complementary metal–oxide-semiconductor.

Fig. 3. Reconstructed results of (a) boatman, (b) ocean animal, and
(c) finger by the AL�DL (second row), AL (third row), and TwIST
(fourth row) algorithms, together with the ground truth (first row) for
comparison. The last column is the enlarged image in the correspond-
ing red squares.

Table 1. Average PSNR (in dB) and SSIM by Different
Image Reconstruction Algorithms in Different Dynamic
Scenes

Scene

AL�DL AL TwIST

PSNR SSIM PSNR SSIM PSNR SSIM

Boatman 28.50 0.836 24.15 0.700 22.47 0.589
Ocean animal 30.47 0.916 25.00 0.802 24.72 0.781
Finger 42.00 0.983 32.22 0.932 28.56 0.894
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TwIST algorithms, the reconstructed images by the AL�DL
algorithm have a clearer spatial shape and less background
noise. To further compare the image fidelity by the three algo-
rithms, we chose the reconstructed images at a time of 14 ps to
compare with the static image, as shown in Figs. 5(e)–5(h).

Here, the static image is achieved by external CCDmeasure-
ment without encoding operator C and shearing operator S,
as shown in Fig. 5(e). Meanwhile, the intensities of
Figs. 5(e)–5(h) are also integrated along the horizontal direc-
tion, and the calculated results are given on the right of the
relative images. The AL�DL algorithm can retain very high
image fidelity, but the AL and TwIST algorithms cause a cer-
tain degree of image distortion. The fundamental reason should
be the mismatch of the sparse domain in image reconstruction.
More importantly, like the static image, the blocked part in the
laser spot (see light blue squares) can be clearly distinguished by
the AL�DL algorithm, where an obvious valley in the inten-
sity curve is observed, but not by either the AL or TwIST
algorithm, especially the TwIST algorithm.

In the first experiment in Fig. 5(a), the spatial shape of the
dynamic scene remains unchanged. In the second experiment,
we measure the wavefront movement by obliquely illuminating
a collimated femtosecond laser pulse on a transverse fan pat-
tern, where both the signal strength and spatial shape in the
dynamic scene change. The experimental design is presented
in Fig. 6(a). A 7 ps (FWHM) laser pulse after collimation
obliquely illuminates a transverse fan pattern with an angle
of ∼30° to the surface normal. Our CUP system faces the
pattern surface and collects the scattered photons from the
pattern scene. Here, the shearing velocity of the streak camera
is 0.66 km/s; thus, the imaging speed is 50 billion fps, i.e., 20 ps
exposure time in theory [9]. The reconstruction images by the
AL�DL, AL, and TwIST algorithms are presented in
Figs. 6(b)–6(d), respectively. As expected, the spatial
shape of the fan can be displayed in the whole process of
wavefront movement by the AL�DL algorithm for image
reconstruction, while it is blurred by the AL and TwIST algo-
rithms due to the artifacts in the image reconstruction. To bet-
ter evaluate the image reconstruction effect of the three

algorithms, the reconstructed images in Figs. 6(b)–6(d) are in-
tegrated and compared to the static image measured by an ex-
ternal CCD, as shown in Figs. 6(e)–6(h). Similar to the static
image, the whole outline of the fan in the integrated image via
the AL�DL algorithm is clear, but it is a little fuzzy by the AL
and TwIST algorithms, especially for the center part of the fan
(green circles). To intuitively illustrate the spatial resolution,
the images in Figs. 6(e)–6(h) are processed via Fourier trans-
form, and the calculated results are shown in Figs. 6(i)–6(l).
As can be seen, the AL�DL algorithm can obtain high-
frequency information, which is almost the same as the static
image, while the high-frequency information is lost for the AL
and TwIST algorithms. In general, high-frequency information
represents the fine structure in the spatial domain. Therefore,
compared to the AL and TwIST algorithms, the AL�DL
algorithm has great advantages in observing the spatial details
of a complex dynamic scene.

5. DISCUSSION

The AL�DL algorithm is a data-driven method, which can
optimize the sparse domain and relevant iteration parameters
by learning instead of hand-crafted determination. For CS,
the sparse domain is the core part that determines the sparsity
and affects mainly the coherence. Thus, the sparse domain al-
most determines the image reconstruction quality. In general,
the learning method can seek better sparse domain and itera-
tion parameters, and therefore the AL�DL algorithm can get
higher image fidelity than conventional AL and TwIST algo-
rithms. Because of learning the sparse domain and iteration
parameters, the AL�DL algorithm has high robustness and
allows the encoding operator C to be different in training
and testing processes, while the pure neural network algorithms
cannot, such as deep fully connected networks [58], ReconNet
[59], DR2-Net [60], λ-net [38], and DeepCubeNet [61]. Also,
the AL�DL algorithm embeds a GD algorithm into tensor

Fig. 6. Measuring wavefront movement by obliquely illuminating
a collimated femtosecond laser pulse on a transverse fan pattern.
(a) Experimental design. (b)–(d) Reconstructed results by the
AL�DL, AL, and TwIST algorithms, respectively. (e) Measured
static image by external CCD. (f )–(h) Integrated images from
(b)–(d), respectively. (i)–(l) Results of Fourier transform from (e)–(h),
respectively.

Fig. 5. Measuring temporal evolution of a spatially modulated pico-
second laser spot. (a) Experimental design. (b)–(d) Reconstructed re-
sults by the AL�DL, AL, and TwIST algorithms, respectively.
(e) Measured static image by external CCD. (f )–(h) Extracted images
from (b)–(d), respectively, at the time of 14 ps; curves on the right are
the integration results of the corresponding images along the horizon-
tal direction.
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computation, which involves massive data. In calculation, the
GD algorithm does not easily find the appropriate step size, so
it needs to perform many iterations, i.e., the convergence speed
is low. To decrease the number of iterations, data scientists pre-
fer Newton’s method or a conjugate gradient algorithm by in-
creasing the cost of each iteration [62]. However, some
mathematicians seek a better step size in the GD algorithm
to decrease the number of iterations by increasing the cost
of each iteration, such as the BB method. Here, we utilize
the GD algorithm to calculate the large data by a data-driven
method based on the learning model, which can find the op-
timal step size to decrease the number of iterations without in-
creasing the cost of each iteration and make the gradient show
better orthogonality. It is noted that the AL�DL algorithm
needs just 15 iterations, while the corresponding traditional
algorithm based on the BB method needs more than 100
iterations.

As shown in Figs. 3, 5, and 6, compared to the AL and
TwIST algorithms, the AL�DL algorithm shows great ad-
vantages in image reconstruction accuracy, but it also inherits
the shortcoming of the data-driven method, i.e., the depend-
ence on a learning dataset. In image reconstruction, these im-
ages in the dataset should have some similarities to those in
the dynamic scene. An inappropriate training dataset may lead
to results worse than those obtained by the AL and TwIST
algorithms. In some special dynamic scenes, it may be difficult
to find a similar dataset for training. In this case, it is feasible
to increase the sampling rate m, such as lossless-CUP or multi-
encoding CUP. Moreover, it is also a good idea to optimize
the codes, which is similar to optimizing the sparse domain,
which can reduce coherence. However, the AL�DL algo-
rithm cannot be adopted directly to optimize the codes, be-
cause here the codes are considered as constant. Optimizing
the codes demands that the mathematical architecture regard
the codes as a variable; thus, the whole AL�DL architecture
needs to be redesigned. In the future, we will strive to seek
some new algorithms to simultaneously optimize the codes,
sparse domain, and iteration parameters by learning the
dataset.

6. CONCLUSION

In summary, we have developed a new AL�DL algorithm to
realize high-fidelity image reconstruction for CUP. In our
method, there are four key points: (1) optimizing the sparse
domain in multiple transformation; (2) optimizing the relevant
calculation parameters in the iteration process; (3) employing
the GD algorithm to improve computing efficiency; (4) embed-
ding the U-net architecture to help denoise. Key points (1), (2),
and (4) are implemented by the DL method, and improving
key point (3) also needs the DL method. However, the whole
framework is determined by the AL method, which combines
these four key points. Thus, the AL�DL algorithm not
only utilizes the training neural networks, but also has some
potential mathematical interpretations. More importantly,
these results from theoretical simulations and experimental
measurements show that the AL�DL algorithm is superior to
conventional AL and TwIST algorithms in image fidelity and
computing efficiency. Additionally, the AL�DL algorithm is a

simple mathematical architecture, so it is easy to
extend to other high-dimensional tensor fields. In future stud-
ies, we will continue to search for better image reconstruction
algorithms for CUP to achieve super-high image fidelity.
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